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Abstract

Understanding the process of protein–RNA interaction is essential for structural biol-

ogy. The thermodynamic process is an important part to uncover the protein–RNA

interaction mechanism. The regulatory networks between protein and RNA in organ-

isms are dominated by the binding or dissociation in the cells. Therefore, determining

the binding affinity for protein–RNA complexes can help us to understand the regula-

tion mechanism of protein–RNA interaction. Since it is time-consuming and labor-

intensive to determine the binding affinity for protein–RNA complexes by experi-

mental methods, it is necessary and urgent to develop computational methods to

predict that. To develop a binding affinity prediction model, first we update the data-

set of protein–RNA binding affinity benchmark (PRBAB), which includes 145 com-

plexes now. Second, we extract the structural features based on complex structure,

and then we analyze and select the representative structural features to train the

regression model. Third, we random select the subset from the PRBAB2.0 to fit the

protein–RNA binding affinity determined by experiment. In the end, we tested our

model on the nonredundant PDBbind dataset, and the results showed that Pearson

correlation coefficient r = .57 and RMSE = 2.51 kcal/mol. The Pearson correlation

coefficient achieves 0.7 while removing 5 complex structures with modified resi-

dues/nucleotides and metal ions. While testing on ProNAB, the results showed that

71.60% of the prediction achieves Pearson correlation coefficient r = .61 and

RMSE = 1.56 kcal/mol with experiment values.
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1 | INTRODUCTION

Protein–RNA interactions participate in many biological functions in

organisms.1,2 The driving force of protein-RNA interaction is the

kinetics, which ultimately regulate gene expression.3–5 The mutation

that occurred in the complex can increase or decrease the binding

intensity, which can further lead to disorders of metabolism and cause

diseases. Knowledge about protein-RNA binding affinity is essential

for understanding protein–RNA recognition mechanism in post-

transcriptional gene regulation. The protein–RNA binding affinity,

described as the equilibrium dissociation constant, can be measured

by isothermal titration calorimetry (ITC), surface plasmon resonance

(SPR), electrophoretic mobility shift assay (EMSA), filter binding assay

(FBA), and dynamic light scattering (DLS).6–10 Since experimentallyXu Hong and Xiaoxue Tong contributed equally to this work.
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determining the binding affinity between protein and RNA is time

consuming and laborious process, it is needed to develop the compu-

tational method instead.11

In the prediction of protein–RNA complex structures, the devel-

oped scoring functions based on the hypothesis that the near-native

structure with the lowest energy are also used to calculate the binding

affinity of the decoys, such as DRNA.12 Besides, a series of docking

scoring functions have been developed to rank the protein–RNA dock-

ing decoy structures.13–16 Although these docking scoring functions can

distinguish near native structures from decoys, our previous work shows

that the predicted binding free energy from three available scoring func-

tions has a low correlation with the experimental binding affinity.17

After that, several methods have been developed to predict protein–

RNA binding affinity during the last few years. Dias et al.18 developed a

generalized linear modeling (GLM)-score to predict protein–RNA binding

affinity, which uses structural features including hydrogen bonds, hydro-

phobic contacts, van der Waals, and the deformation effect. Nithin

et al.19 predicted the binding affinity by using the molecules conforma-

tion change and other structural features with bound and unbound

structure. In most instances, it is difficult to find the unbound structure

of the complex. Therefore, it maybe not easy to apply it on large scales

for prediction. In PredPRBA, Deng et al. combined the sequential and

structural features of proteins and RNA and used a gradient boosted

regression tree algorithms to predict the binding affinity of protein–

RNA complexes.20 They trained the prediction model based on com-

plexes with different types. Therefore, these models cannot be used to

predict binding affinity in other cases. Chen et al. predicted the protein–

RNA binding affinity by the molecular mechanics/Poisson Boltzmann

surface area (MM) and MM/generalized Born surface area approaches

based on molecular dynamic simulations.21 Though the method is time-

consuming to predict the protein-RNA binding affinity, it can achieve a

Pearson correlation 0.57 while testing.

The prediction of protein–RNA binding affinity lags far behind

the study of protein–protein binding affinity prediction.22–28 The main

reason may be that there is not enough data, which makes it difficult

to develop a new method to predict protein–RNA binding affinity. At

present, there are three protein–RNA binding affinity datasets, which

include PDBbind,29 ProNAB,30 and our own protein–RNA binding

affinity benchmark (PRBAB).17 In the current version of PDBbind (ver-

sion 2020), it includes 142 protein–RNA binding affinity data. The

authors do not collect the experimental conditions for these data,

which makes it difficult to apply these data to train the binding affinity

prediction model. For example, we used experimental temperature to

calculate delta free energy in Equation (1). The ProNAB includes

264 sequence-based protein–RNA binding affinity data, but it does

not remove sequence highly similarity structures which make the

trained model easier and tend to be overfitting. In 2013, our group

developed a dataset collected 73 nonredundant protein–RNA binding

affinity data named PRBAB v1.0.17 Based on this, in this article, we

update the protein–RNA binding affinity dataset into a larger dataset

with 145 nonredundant protein–RNA complexes at present. Com-

pared to the other two binding affinity datasets, PRBAB v2.0 includes

47 new binding affinity data that are not included in the other

datasets. Besides, it also provides a nonredundant binding affinity

data to evaluate the scoring function in docking. Then, we fit a model

PRdeltaGPred (protein–RNA delta G prediction) to predict protein–

RNA binding affinity based on structural features, which are proved to

be important in protein–protein binding affinity prediction. Since

these features are highly correlated with each other, we cluster these

features and select the representative features. In order to reduce the

impact of experiment errors in the training process, we train the

model by randomly selecting a subset of the dataset. Finally, to test

the accuracy of our method, we predicted the binding affinity of the

protein–RNA complex structures extracted from PDBbind31 and com-

pared it with the experiment values. The results show that our model

achieves a Pearson correlation coefficient 0.57 while testing on

41 nonredundant protein–RNA complexes in PDBbind.

2 | MATERIALS AND METHODS

2.1 | The dataset of protein–RNA binding affinity

In PRBAB v1.0,17 we had collected 73 protein–RNA complex struc-

tures with the binding affinity from PDB. But the number of protein–

RNA complex structures in PDB has doubled since 2013. At the same

time, the number of protein–RNA complex structures with binding

affinity data are gradually increasing, which enables us to update the

binding affinity dataset. More and more binding data can be used to

build an effective protein–RNA binding model.

Compared with PRBAB v1.0, in PRBAB v2.0, we collect data in a

semiautomatic way, which makes data collection more efficient. As of

July 20, 2018, there are 1199 new added protein–RNA complex

structures. As the same as before,17 these structures whose protein

or RNA is too shorter are filtered out. Finally, 876 protein–RNA com-

plex structures are extracted. And then, these complex structures are

grouped into 456 clusters by BLASTClust32 with a threshold of pro-

tein sequences identity at 70%. After that, 73 clusters contain struc-

tures that we have collected before 2013, so the complexes in these

clusters are removed, and 386 clusters are kept finally. Since the value

of the binding affinity exists in the literature in the form of equilibrium

dissociation constants (Kd, 1/Ka, Koff/Kon), we search the literature

through these key words. The data construction flowchart is shown in

Figure 1. Finally, 145 protein–RNA complex structures with binding

affinity in the dataset in total. So far, the updated dataset PRBAB v2.0

contains a total of 145 protein–RNA complex structures. The details,

such as the pH value, temperature, and the reference, about PRBAB

v2.0 are shown in Table S1. Unlike previous method,21 which presents

the free energy with pKd representation, in order to be consistent

with the data of PRBAB v1.0, we calculated it according to the Gibbs

free energy formula33 as follows.

ΔG¼RT InKd ð1Þ

The value of the R is 8.314 J K�1 mol�1, and the T represents the tem-

perature (K).
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There are another two datasets that include protein–RNA binding

affinity, which make it possible to evaluate our method with more

data. The PDBbind database includes 1052 protein–nucleic acid bind-

ing affinity data. From the database, we selected protein–RNA com-

plexes and removed the complex structures in which the protein

sequence identity cutoff larger than 0.7 with the complex structures

in PRBAB v2.0. Finally, there are 41 protein–RNA complexes in our

first validation dataset (the ID of the complex, the experimental value,

and the predicted values of our model are all in Table S2).

In addition to mentioned above, the ProNAB30 also includes

protein–RNA binding affinity data. We compare our dataset with

PDBbind and ProNAB. As shown in Figure 3, there are 47 protein–

RNA complexes in our datasets are unique (the comparison is dis-

cussed in Section 3).

2.2 | Structure-based features

Since the traditional physical interaction energy terms (such as hydro-

gen bonds, electrostatic potentials, desolation energy, and van der

Waal interaction potentials)34,35 and structural features (including

noninteracting interaction and interface contact [IC]) have been

proved useful to predict the protein–protein binding affinity.36 In

order to model the binding affinity of protein–RNA, some characteris-

tics that have been proven correlated with protein–protein binding

affinity are used in our binding affinity model. In the process of calcu-

lating structural features, as the same as the previous work,26,36,37 we

classified the residues into polarity, nonpolarity, and charged accord-

ing to the different physicochemical characteristics. Polar residues

include (C, H, N, Q, S, T, Y, W), nonpolar residues include (A, F, G, I,

L, V, M, P), and charged residues (E, D, K, R). Details of these features

are encoded in the following sections.

2.2.1 | Hydrogen bond energy

Hydrogen bonds play a key role in molecular interactions38 because

hydrogen bonds can increase the equilibrium dissociation constants of

two molecules.39 Here, HBPLUS35 is used to calculate hydrogen

F IGURE 1 The flowchart of building
the binding affinity dataset of protein-
RNA complexes. We download 1199
protein–RNA complexes from PDB,
876 complexes are retained after deleting
less than five nucleotides of RNA and less
than 20 amino acids of protein. These
complexes were clustered according to
70% sequence identity using BLASTClust,

and the 73 protein–RNAs of protein–
RNA binding affinity benchmark (PRBAB)
v1.0 were removed, and 456 protein–
RNA complexes are kept. We remove
ribosomes and large viruses. After finding
binding affinity data from the remaining
complexes, and the Kd data of
72 complexes are finally obtained.
Combined with PRBAB v1.0, PRBAB v2.0
contains 145 binding affinity data.

F IGURE 2 The pipeline of the protein–RNA binding affinity
prediction model PRdeltaGPred. The multiple features are derived
from the binding affinity prediction tools and scoring functions of
protein–protein interaction. We calculated the features of protein-
RNA on protein-RNA binding affinity benchmark (PRBAB) v2.0 and
used the clustering method to get the better feature subsets. Three-
fifths of the data in the database is chosen randomly as the training
set, and the remaining part is used as a testing set. When the R ≥ 0.55
on both the training set and the testing set, the model is retained.

HONG ET AL. 3
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bonds in the protein–RNA complex structures. It is shown that a sin-

gle hydrogen bond can contribute to binding energy from 0.5 to

1.8 kcal/mol.39 We simply count the number of hydrogen bonds and

calculate the contribution of the entire hydrogen bond to free energy

according to the energy with 0.5 kcal/mol per hydrogen bond.

2.2.2 | Solvation energy

The solvation energy play a key role in the prediction of protein–

protein binding affinity in the previous study since the exposed

areas of side chains of polar residues can increase the free energy

of the system because these areas can reduce the entropy of water

binding, indicating that water molecules change the energy of the

system during the interaction.34 In 1992, Horton et al. first pio-

neered the use of solvent-accessible surface areas and atomic sol-

vent access parameters to calculate the binding free energy of

protein–protein complexes.24 In 1997, Zhang et al. improved the

desolvation energy model by grouping the atoms in 20 residues into

18 atomic types according to property of the atom. And then they

combined desolvation energy with electrostatic interaction to pre-

dict the binding affinity, the results showed that it has a high corre-

lation between the experiment value and the predicted value in

nine protease-inhibitors.40 In 2007, Audie et al. predicted the

changes of the binding free energy between proteins and ligands

through the changes of desolvation free energy, the changes of con-

tact free energy and then combined these with the energy contrib-

uted by hydrogen bonds and salt bridges.22 In 2014, Janin et al.

predicted the binding affinity by taking the solvent accessible area

changes and conformational changes into account.41

To consider the effect of solvation energy on protein–RNA bind-

ing affinity, similar to protein–protein binding affinity prediction, we

classify the atoms in residues and nucleotides both into five types,

wherein the atomic types of residues are C, S, N/O, O�, N+, and the

atomic solvent energy parameters (ASP) are derived from Zhou

et al.'s.42 We classify the atomic types of nucleotides as C, P, O�, N,

O and determine the contribution of different atomic types to binding

free energy by calculating the size of the changes of the solvent

accessible area upon binding. The surface accessible areas of bound

protein–RNA complexes, unbound protein, and unbound RNA are cal-

culated by the NACCESS.43 As the same as,34 the solvation energy is

calculated by formula (2).

ΔEdelsolvation ¼
X
i

Ai �ΔSi ð2Þ

where Ai represents the atomic solvent energy parameters and ΔSi
represents the change of the solvent accessible area with

corresponding atom.

2.2.3 | Salt bridge

As the same as the calculation of hydrogen bond energy, the number

of salt bridges formed between NZ atoms or NE, CZ, NH1, NH2

atoms of lysine (LYS), and P/OP1/OP2 atoms of arginine (LYS) are

used as the feature of salt bridges.44

2.2.4 | Noninteracting interface

Kastritis et al. found that the ICs and the noninteracting surfaces were

highly correlated with protein–protein binding affinity, and then they

considered these characteristics as related features in the prediction

of protein–protein binding affinity.26,36,45 In PRdeltaGPred, we also

used these noninteracting interface (NIS) features.

2.2.5 | Interface contact

The key residues or bases on the protein-RNA interface play a key

role in protein–RNA interactions. There are a series of scoring func-

tions developed based on the protein–RNA interface.14,16,46,47 There-

fore, in order to characterize the role of these key residues, we

encode the features of the interface by counting the interactions

between different residue-nucleotide pairs. The amino acids in pro-

teins are divided into three categories according to polarity, nonpolar-

ity, and chargeability.

F IGURE 3 The comparison among our updated dataset, PDBbind
and ProNAB. Our dataset includes 145 nonredundant protein–RNA
binding affinity data. The PDBbind dataset includes 142 protein–RNA
binding affinity data, and ProNAB includes 342 protein–RNA binding
affinity data. Our dataset has 47 data that are not included in other
two datasets.

4 HONG ET AL.
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2.2.6 | Rpvescore

Due to the contribution of electrostatic and van der Waals interaction

to the binding affinity. Here, we use RpveScore to calculate the van

der Waals interaction energy, electrostatic potential energy, and the

paired residue-base statistical potential. Rpvescore includes electro-

static and van der Waals interactions as well as residual-base pair

interaction potentials, wherein electrostatic and van der Waals calcu-

lation formulas are from Zhang et al.48

2.2.7 | Noncovalent interaction

NCIPLOT can be used to calculate noncovalent interactions (NCI)

between molecules based on electron density.49 In LISA, NCIPLOT is

used to calculate NCI terms including van der Waals interactions,

hydrogen bonds, and stacking interactions to characterize key

protein–protein characteristics. In the LISA model, the authors com-

pute the characteristics of complexes by means of different residues

in different solvent surface areas to count the number of promotions

and exclusions of NCI to protein–protein interactions.28 Wherein the

residual base located in the solvent accessible surface is calculated

according to the theory by Levy et al.50 Therefore, similar to the way

of LISA, we also take NCI into account in our prediction of protein-

RNA binding affinity.

By defining statistically relevant features, wherein hydrogen

bonds and salt bridges each contain a one-dimensional feature, the

desolvation energy of complexes can be encoded to six-dimensional

features, and the feature number of hydrogen bond and salt-bridge

are one, respectively. According to the classified residues and four

different nucleotides, we can obtain 7 noninteracting interface fea-

tures, 12 interaction interface features, 7 Rpvescore features, and

28 noncovalent interaction features. Including a temperature, there

are 63 features in total. These features are also listed in Table S5

accordingly.

2.3 | Feature selection

There are 63 features that can be used to predict the protein–RNA

binding affinity. To avoid the redundancy between features which

may bias the model trained by these features, we select features

based on the correlation between features. We randomly selected

80% of these data from the training set to calculate the correlation

between the features and repeat 10 times. Finally, we select the

representative features by clustering with the threshold 0.8, which

is higher than the criteria of similarity of 0.6 in the sequence-based

prediction protein–protein binding affinity method.51 The clustering

algorithm groups similar features as far as possible through the

threshold and obtains representative features according to the aver-

age distance among features. Feature clustering is done through the

hierarchical clustering function hierarchy in the scipy library in

Python.

2.4 | Model evaluation

In this article, our evaluation criteria is the same as other methods.20

The model is evaluated by Pearson correlation coefficient R and root

mean square error (RMSE). The calculations of Pearson correlation

coefficient R and root mean variance RMSE are defined as following.

Given a pair of random variables (X, Y), R is calculated as

R¼ E X�μXð Þ Y�μYð Þ½ �
σXσY

ð3Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ypred tð Þ�yexp tð Þ� �2
n

s
ð4Þ

where E represents expectations, and μx and μy represents the aver-

ages of X and Y respectively, σx and σy are standard deviations. The

Pearson correlation coefficient measures the correlation between two

sets of variables. RMSE reflects the error between the predicted value

and the experimental value.

3 | RESULTS

3.1 | The binding affinity dataset

For further analysis of the collected binding affinity data set, we plot a

distribution based on the binding affinity data in PRBAB v2.0, which is

shown in Figure S1. As can be seen from the statistical distribution,

most of the complex with the binding affinity from �12 to �8 kcal/

mol. There are only two complexes with binding affinity above

�5 kcal/mol. The lower the value of binding affinity, the stronger the

binding strength between protein and RNA.

3.2 | Compared with PDBbind and ProNAB

In PDBbind,29 the author collected 23 496 biomolecular complexes

binding affinity data, 142 of them are protein-RNA complexes. In Pro-

NAB, the authors collected more than 20 000 experimental binding

affinity data for protein–RNA/DNA, which also includes the binding

free energy upon mutation and the dissociation constant. Here, we

compared our data with these two datasets with protein–RNA com-

plexes. The results shown in Figure 3. In our updated dataset, 47 out

of 145 protein–RNA binding affinity data are not included in other

two datasets. There are 46 complexes that exist in all three datasets.

The ProNAB, in which 125 complexes do not appear in other two

datasets, have the most complexes.

3.3 | The results of feature selection

Similar to the sequence-based method to predict protein–protein

binding affinity, in order to avoid the redundancy among features in

HONG ET AL. 5
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the model, we calculated the Pearson correlation coefficient among

different features by randomly selecting 60% of these data in PRBAB

v2.0, and then we averaged the results calculated by repeating

10 times and clustered them by Pearson correlation coefficient 0.6.

As shown in Figure 4, there are many features with a high correlation

with each other (R > 0.6), which indicates that the structural features

are highly relevant to each other quantified in different ways. Through

hierarchical clustering to obtain representative features, only

39-dimensional features are kept from 63-dimensional features. Next,

we use the remaining 39-dimensional features to train our binding

affinity model.

3.4 | Regression model

Similar to protein–protein binding affinity prediction,51 since there are

difference when using different subsets to calculate the Pearson cor-

relation coefficient between features, the fixed dataset used as a

training set may bias the regression model, resulting in the model

overfitting. In addition, because the low resolution of x-ray crystal

structure also affects the prediction of protein–RNA binding affinity,

and the experimental data obtained by experimental methods may

have experimental errors. Therefore, taking these into account, we

trained our model on the entire PRBAB v2.0 dataset and tested our

model in PDBbind. In training, we randomly select a subset of PRBAB

v2.0 to train the model, and another subset of PRBAB v2.0 is used to

select the model. We randomly divided PRBAB v2.0 into two parts by

a scale 3:2. Other words, 87 of 145 are randomly selected to train the

model, and the left is used to select the model. And then, we calcu-

lated the Pearson correlation coefficient R between the predicted

values and the experimental value, the model was kept if the Pearson

correlation coefficient R large than 0.55 on both the training set and

the test set. The process of model training, testing, and validation is

shown in Figure 2.

We used the ordinary least square (OLS) for fitting the protein–

RNA binding affinity. OLS is linear squares method for estimating the

unknown parameters in a linear regression model. The training pro-

cess is implemented by python.

3.5 | Model evaluation

During the training, we retained a model with a Pearson correlation

coefficient greater than 0.55. According to the above conditions, we

retained more than 200 models. As shown in Figure S2, the best

RMSE on the training set is less than 1 kcal/mol, but the fluctuation

of the RMSE is 2–18 kcal/mol. The Pearson correlation coefficient

can be as high as 0.8, and by removing the model with a root mean

F IGURE 4 Clustering of features. We
randomly selected a subset of data from
the protein–RNA binding affinity
benchmark (PRBAB) v2.0 10 times to
calculate the average of the correlation
between the two features. The bluer the
color, the higher the correlation.

6 HONG ET AL.
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variance greater than 4 kcal/mol. The Pearson correlation coefficient

and the root mean variance of the model are shown in Figure S3. By

retaining a model with correlation greater than 0.55 and RMSE less

than 4 kcal/mol on both the training set and the test set, one of the

models is used to predict the training set and the test set. The results

are shown in Figure 5.

Based on the Pearson correlation coefficients R and RMSE, six

models are finally selected to predict protein–RNA binding affinity.

And the six models are tested on PDBbind. As shown in Table S3, the

best model is used to predict the protein–RNA binding affinity on the

PDBbind, which achieves a Pearson correlation coefficient of 0.57

and a RMSE of 2.51 kcal/mol compared to experiment values. By

comparing the experimental values one by one, we found that several

complexes have a larger binding affinity deviation between the predic-

tion value and the experiment value. In order to find out the reason

why the model prediction error is too large, we analyzed the experi-

mental value and the prediction value of more than 4 kcal/mol com-

plexes and found that the IDs of these five complexes are 2L41, 5ID6,

4TUW, 4RCJ, and 4CSF. By manually examining the experimental data

of the original article and analyzing the structure of the complexes,

we found that the binding affinity of 2L41 in PDBbind was 763 μM,

however, the experimental data was 48 μM (�5.88 kcal/mol) by

examining the original article, the prediction value is �9.18 kcal/mol.

In addition, complex 5ID6 contains metal ions, the amino acid in com-

plex 4TUW and 4RCJ are phosphorylated and methylated, respec-

tively. The RNA in 4CSF is highly flexible. Because there is currently

too little binding affinity data known to contain metal ions and modi-

fied residues/base complexes, it is not possible to train and predict

these complexes in our models. Taking these five complexes not into

account, the Pearson correlation coefficient of the model can achieve

0.7 and the RMSE is 1.42 kcal/mol. The results predicted by our

model on PDBbind's data are shown in Table S2.

We use the data on ProNAB to evaluate our best model. The

comparison between the experiment and the prediction is shown in

Figure 6. As shown in Figure 6, the prediction of 46 out of

81 (51.85%) complexes have high Pearson correlation (r = .85) with

experiment values. The prediction of 61 out of 81 complexes have

Pearson correlation (r = .61) with experiment values (The comparison

between the experiment and prediction are listed in Table S4).

4 | CONCLUSION AND DISCUSSION

In this manuscript, we first update the protein–RNA binding affinity

data, which adds 73 binding affinity data compared to the first

protein–RNA binding affinity dataset. It has twice as much as the

number of previous dataset PRBAB v1.0. In addition, by characterizing

the structure of protein–RNA complexes, we developed a model to

predict the protein-RNA binding affinity by using the least-squares

method after removing redundancy of the structural features. By test-

ing on 41 examples of protein-RNA complexes in the PDBbind data-

set, the Pearson correlation coefficient R of the model can achieve

0.57 and RMSE is 2.51 kcal/mol. In the process of selecting features,

we calculated the structural features of protein-RNA complexes in dif-

ferent ways. The results showed that there was a high correlation

between structural features, indicating double counting in the charac-

teristics of protein–RNA interactions derived from different patterns.

Though our methods achieved the Pearson correlation coefficient

.57 with the experiment, the prediction of complex structures that

contain ion or modified residues is not accurate at present for lack of

F IGURE 5 The comparison of the
predicted and experimental values on the
protein–RNA binding affinity benchmark
(PRBAB) v2.0. Three fifths of the data are
fitted on the protein–RNA binding affinity
dataset and the other data are used as
testing dataset. The Pearson correlation
coefficient on the training set is .6 and the
Pearson correlation coefficient on the test
set is .55.
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amount of training data. Since the artificially defined features are

coarse-grained, determining which structural features is important for

protein–RNA interaction is undesirable. Although structure-based

binding affinity prediction method limits its application in many cases

in current stage. Because of AlphaFold, almost all protein structures in

all kinds of proteome can be available. We believe that with more and

more RNA 3D structure available, our structure-based binding affinity

prediction method will be useful in future.
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