ELSEVIER

Challenges in structural modeling of RNA-protein

interactions

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in
Structural Biology

Check for
Updates

Xudong Liu, Yingtian Duan, Xu Hong, Juan Xie and

Shiyong Liu

Abstract

In the past few years, the number of RNA-binding proteins
(RBP) and RNA-RBP interactions has increased significantly.
Here, we review recent developments in the methodology for
protein-RNA and protein—protein complex structure modeling
with deep learning and co-evolution, as well as discuss the
challenges and opportunities for building a reliable approach
for protein-RNA complex structure modelling. Protein Data
bank (PDB) and Cross-linking immunoprecipitation (CLIP) data
could be combined together and used to infer 2D geometry of
protein-RNA interactions by deep learning.
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RNA-binding proteins (RBP) specifically bind RNA in
cells, and their RBP-RNA complexes play important
roles in post-transcriptional gene regulation to fine-tune
gene expression [1]. Recently, hundreds of RBPs and
their binding sites on RNAs have been discovered and
investigated using high-throughput CLIP techniques
[2—4]. In 2014, the Tuschl group analyzed 1542 RBPs in
the human proteome [1]. Since then, the number of
identified RBPs has been expanded to over 4000 [5].
This raises the question, how many RBPs are in the
human proteome? A sequence-based approach RBPPred
encoding global protein sequence descriptors has been
proposed, which predicted 6657 possible RBPs in
human proteome [6]. Each RBP could bind multiple
RNA targets. The number of experimentally solved
RBP-RNA complex structures is much smaller than the

number of known RBP-RNA interaction pairs. There is a
gap in our structural knowledge of protein-RNA com-
plexes, which could be filled by computational RNA-
protein complex structure modeling.

What is the current state of RNA-protein
complex structure modeling?

The major progress made in recent years involving the
development of the RNA-protein complex structure
prediction algorithms is reviewed below. Additionally,
the possible challenges facing RNA-protein complex
structure modeling are analyzed and possible solutions
are discussed. The current methods for predicting
protein-RNA complex structures include free docking
[7—14], template-based docking [15,16], deep learning-
based [17] and others [18,19], which are summarized
in Table 1.

Free docking for RNA-protein complex
structure modeling

Free docking is one of the main strategies for compu-
tational modeling of protein-RNA complex structures
[7—12,14,23,24]. In early pioneer work, researchers
directly built protein-RNA docking decoys with protein-
ligand docking [25] and protein—protein docking pro-
cedures [7,8]. However, systematic analysis has shown
that the characteristics of protein—protein interfaces
differ significantly from those of protein-RNA interfaces
in terms of atomic packing density, propensity for posi-
tively charged residues, T0-T stacking interactions, and
secondary structure states. In 2013, a protein-RNA
docking method 3 dRPC was proposed, which includes
the FFT-based sampling algorithm RPDOCK and the
coarse-grained scoring function DECK-RP. The predic-
tion success rate of 3 dRPC for the top 10 models on the
docking test set is 45.5% [9]. If the output of the top
1000 models is considered, the success rate of docking
exceeds 70%. This indicates it is necessary to construct
an effective scoring function to select final good models
in future work. The neural network energy function
[26], DeepRank [27], DeepPotential [28] and
DeepRank-GNN [29] could help develop promising
scoring functions for ranking of near-native docking
structures. Recently, a deep-learning-based scoring
function DRPScore was proposed for identifying native-
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Table 1

The methods of protein-RNA complexes prediction.

Year Method Modeling approach Webserver/Software Reference

2010 FTDock An FFT-based protein—protein docking - [7]

2011  ATTRACT A protein—protein docking with a coarse-grained  — [8]
forcefield for protein—RNA interactions

2013 3 dRPC An FFT-based protein-RNA docking incorporates  http://biophy.hust.edu.cn/new/resources/3dRPC [9]
the features specific to RNA-protein interfaces

2014 RosettaDock A genetic algorithm-based strategy with a http://albios.saclay.inria.fr/rosettadockrna [10]
RosettaDock scoring scheme

2015 NPDock GRAMM for global macromolecular docking, https://genesilico.pl/NPDock/ [11]
scoring with a statistical potential

2016 PRIME Template-based modeling http://rnabinding.com/PRIME.html [15]

2016 ZDOCK Integration of physicochemical information about — [12]
RNA into ZDOCK

2016 HADDOCK Integrate information derived from biochemical, https://wenmr.science.uu.nl/haddock2.4/ [13]
biophysical or bioinformatics methods to
enhance sampling, scoring or both

2017 HDOCK Hybrid docking algorithm of template-based http://hdock.phys.hust.edu.cn/ [20]
modeling (Sequence search) and free docking

2018 ICM An FFT-based docking algorithm implemented in  — [14]
the ICM package

2019 RNP-denovo A Rosetta method with fold-and-dock RNA to https://www.rosettacommons.org/ [18]
protein surface

2019 PRIME2.0 Template-based modeling with RMalign http://rnabinding.com/RMalign/PRIME2.0.html [21]

2019 RnaX A method based on RNA-protein fragment pairs,  https://modelx.crg.eu/ [19]
as well as being integrated into the ModelX tool
suite.

2020 P3DOCK A template-based approach PRIME (version 2.1)  http://rnabinding.com/P3DOCK/P3DOCK.html [22]
and an FFT-based docking algorithm 3 dRPC

2022 US-align Template-based modeling with US-align https://zhanggroup.org/US-align/ [16]

2022 RoseTTAFoldNA An end-to-end deep learning approach of https://github.com/uw-ipd/Rose TTAFold2NA [17]

modeling protein-nucleic acid complexes.

like RNA-protein structures [30]. The DRPScore was
trained using a four-dimensional convolutional neural
network (4DCNN) on a protein-RNA docking decoys
generated by 3 dRPC. The success rate of DRPScore is
reported as 43.86% if the top 5 predictions are consid-
ered [30]. The performance of DRPScore may be
limited by the success rate of the rigid-body FFT-based
docking algorithm 3 dRPC.

Template-based modeling for RNA-protein
complex structure modeling

Compared to free docking, template-based modeling
methods have made great progress. They are based on
the hypothesis that similar protein sequences may fold
into similar three-dimensional structures. This hypoth-
esis has been applied and confirmed using
protein—protein complexes, which demonstrated that
similar protein structures may bind in similar ways to
form  protein—protein  complexes [31,32]. In
protein—protein complexes, the similarity of binding
modes is related to the structural similarity of partici-
pating proteins [32]. This hypothesis can also be
extended to protein-RNA complexes [15]. As with
monomeric proteins and protein—protein complex

systems, protein-RNA complex systems do have a
transition point, which is defined as the point when a
protein-RNA complex transitions from a random to a
similar binding mode as the sequence or structural
similarity of the protein and RNA increases. Based on
this principle, a template-based protein-RNA complex
structure prediction method PRIME was developed
[15]. The top 1 accuracy of PRIME is about 40%, which
is much higher than the previously developed protein-
RNA free docking algorithm 3 dRPC [9]. PRIME has
successfully predicted some systems where current free
docking methods failed due to conformational changes
upon binding. For example, the unbound target (pro-
tein: 1XPI_A, RNA: 2182_E) has a large conformational
change between its free state and the native state
(2182_AE), so the free docking algorithm fails. However,
the template-based method PRIME achieved success in
a few cases. The RNA alignment algorithm SARA in
PRIME has some flaws. Specifically, its scoring function
depends on the size of the RNA and is missing poten-
tially good templates in some cases. To improve the
ability of finding remote homologous templates for
RNA, a novel RNA 3D structure alignment algorithm
RMalign was developed. The similarity scoring function
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of RMalign, RMscore, is independent of RNA size [21].
The latest version of PRIME, PRIME2.0 [21], replaces
SARA with RMalign, which improves the success rate by
about 10%. If no template structure is found, free
docking methods are complementary with that of
PRIME. This resulted in a combined protein-RNA
docking server, P3DOCK, being proposed in 2020
[22]. P3ADOCK contains the template-based method
PRIME and the free docking algorithm 3 dRPC. It is
challenging to integrate the models generated by the
two different docking algorithms, however it can be
solved based on the protein-RNA complex transition
points identified earlier. The success rate of P3ADOCK
for the top 1 prediction is 58% [22]. Recently US-align
[16] was proposed, which can be used to align mono-
mer and complex structures of protein, RNA and DNA,
as well as perform template-based modeling of
protein—protein and protein-RNA/DNA  complex
structures. The method has only been compared with
earlier methods (free docking algorithm 3 dRPC and
template-based approach PRIME) and did not include
PRIMEZ.0. It was reported that the success rates of US-
align, 3 dRPC and PRIME are 22.55%, 15.49% and
19.82% respectively for 439 RNA-protein complexes
[16]. Furthermore, when the first size-independent
RNA alignment method RMalign was developed, it re-
ported the success rate of PRIMEZ2.0 [21]. For the top 1
prediction, the success rates of PRIME and PRIMEZ2.0
(with RMalign) were 39% and 51%, respectively. Previ-
ous data reported in Nature Method claimed the suc-
cess rate of US-align was 45.6% higher than 3 dRPC and
13.8% higher than PRIME [16]. These conflicting re-
sults show individual experiments can be misleading
and further investigation is needed. Interestingly, US-
align is derived from an RNA alignment algorithm
RNA-align [33], which is very similar to RMalign. US-
align was extended into US-align2.0 with a non-
sequential alignment feature [34], which shows that it
can find more remote RNA—RNA structure pairs.

Co-evolution signal for RNA-protein
complex structure modeling

Following the idea of co-evolution of protein-RNA in-
teractions, Marks’ team proposed a maximum entropy
probability model to infer protein-RNA residue-base
contacts and constructed a protein-RNA complex
structural model with the help of the free docking
program HADDOCK [35]. Limited by the precision of
inferring coevolutionary signals from sequences and the
lack of coevolution-based docking methods, they have
only succeeded in a few cases. In CASP15, the accuracy
of the deep learning-based methods for predicting the
3D structure of RNA was not satisfactory, perhaps
because of the small number of available RNA structures
[36]. The high accuracy structure prediction of Alpha-
Fold2 is partially based on the co-evolutionary analysis of
the Big Fantastic Database [37]. It remains a challenge
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for RNA. Recent studies have focused on building
comprehensive sequence databases and effective ho-
mologous sequence search tools [37,38].

Deep learning for RNA-protein complex
structure modeling

Recently, deep learning and co-evolution features have
been widely used to infer residue—residue contacts
within single protein structures [39—42], and in
protein—protein complex structures [43]. As deep
learning has made significant progress in protein struc-
ture prediction (AlphaFold2 [40]) and protein—protein
complex structure prediction [43], it is plausible that
it will also change the way of computational RNA-
protein interaction in the near future. AlphaFold is not
yet feasible for direct structural modeling of protein-
RNA complexes though it has been able to predict
protein—protein complex structure with AlphaFold-
Multimer [44] or the newer version AlphaFold2 [45].
The success rates of protein—protein complex structure
modeling are 63% vs 72% for AlphaFold2 and AlphaFold-
Multimer respectively. The mixed results could be
better understood following rigorous testing where the
redundancy between the test dataset and the training
dataset is removed. Recently, an end-to-end deep
learning method RoseTTAFoldNA [17] was proposed
that can be used to predict nucleic acid and protein-
nucleic acid complexes. It was reported that only 27%
of 259 monomeric protein/NA complexes were predic-
ted with high confidence [17]. However, the accuracy of
protein-RNA complex prediction is lower than the ac-
curacy of protein—protein complex structure prediction
by AlphaFold or AlphaFold variations (63% ~ 72%).

Other methods for RNA-protein complex
structure modeling

In addition to the above methods, there are also fold-
and-dock [18] and molecular dynamics simulations
[46,47] that can be used to predict the structure of
protein-RNA complexes. As discussed in a recent review
[48], protein docking with conformational changes re-
mains a challenge. FFT-based rigid body docking is
limited by the protein or RNA conformational change
upon binding. It has been shown that 13.6% of flexible
residues belong to the protein-RNA interface [49]. In an
attempt to model the large conformational changes of
RNA components upon complex formation, an RNP de
novo fold-and-dock algorithm was proposed by Das’
team [18]. The algorithm consists of two steps: 1) use
the FARFAR algorithm to predict the conformation of
RNA; 2) use the program RPDock for docking. The
average RMSD of the best scoring models was improved
from 11.6 A for 3 dRPC to 6.4 A for the RNP de novo
fold-and-dock approach when testing on 10 systems
[18]. This method is able to handle RNA conformational
changes, but the overall performance is limited by the
accuracy of the RNA structural prediction.
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Insights from modeling of a single protein, a single
RNA and protein—protein complex structures by deep
learning

In single protein and single RNA structure prediction,
significant progress has been made in modeling 3D
structures using 2D geometry of contact [50—52], dis-
tance (AlphaFold [39], AlphaFold2 [40], CopulaNet
[41]) and distance and orientation [42,53,54]. The most
important findings are introducing co-evolutionary
analysis and deep learning algorithms, which outper-
form those approaches with classical physically based or
knowledge-based models [55]. Direct coupling analysis
of multiple sequence alignment (MSA) can identify
direct residue—residue contacts in protein—protein in-
teractions from a large number of homologous protein
sequences [56]. Recently, CDPred [57] was combined
with ResNet and an attention-based mechanism using
co-evolutionary features generated by MSA transformer
[58] and CCMpred [59] as inputs to predict the inter-
chain distance map of both homodimers and hetero-
dimers. In addition to using MSA-derived co-evolu-
tionary features as input, the attention-based
transformer predicts the 3D structure of the protein
directly using MSA as input [40,42]. The outer product
in co-evolution aggregator of CopulaNet [41], has been
shown to be effective and applied to extract information
on residue—residue pairwise interactions from MSA
features of protein—protein complexes [42,43]. It has
been shown that construction of paired MSAs based on
species within different taxonomic ranks can improve
the success rate of protein—protein interaction predic-
tion by AlphaFold2 [60]. More recently, DeepFoldRNA
[54] and trRosettaRNNA [53] in combination with
attention-based transformer have been proposed to
predict the 3D structure of RNA. Both methods use
RNA sequences or MSA of RNA as input to predict
distance and orientation distributions as constraints for
3D structure prediction.

2D geometry-assisted modeling of protein-RNA
complex structures

Statistical approaches have been used to capture residue
co-evolution in protein-RNA complexes [35,61,62].
Residue evolutionary coupling has been proposed to
predict residue-base contacts between proteins and
RNAs, and then the contacts are used as distance re-
straints to predict the structure of protein-RNA com-
plexes [35]. Hayashida et al. [62] proposed a mutual
information model to predict residue-base interactions
between proteins and RNAs. The AUC (Area under
ROC Curve) of the model is only 0.59 [61], which is
further improved to 0.69 by a novel CRF-based model
with pseudolikelihood maximization direct-coupling
analysis  (plmDCA) [63]. In contrast to the
protein—protein complex structure modeling field, few
studies have used 2D geometry to model the 3D
structure of protein-RNA complexes. Therefore, the

development of protein-RNA complex structure
modeling algorithms based on deep learning and 2D
geometry is still in its infancy. One of the possible rea-
sons for this is that deep learning approaches require lots
of protein-RNA complex structures for accurate model
training [55]. Due to the limited size of protein-RNA
complex structures in PDB, the most promising
protein-RNA complex structure modeling approaches
may combine classic docking approaches with 2D ge-
ometry constrains from deep learning as shown
in Figure 1.

Applications to RBP related biological problems

After developing computational tools for predicting
RNA-protein interactions, it is important to apply these
tools to solve RBP related biological problems. For
example, protein-RNA docking was used to build a
complex structure model showing that EDAL can spe-
cifically bind to EZH2 [64]. CLIP-seq is a high-
throughput technique to map protein-RNA in-
teractions transcriptome-wide in vivo, which produces
lots of RNA-protein binding sites. Taking full advantage
of the protein-RNA binding site data and the RNA
secondary structure generated by high-throughput
sequencing, a template-based method PRIME-3D2D
was proposed to predict binding sites for protein-RNA
interactions on a yeast genome [65]. PrismNet [66]
uses experimentally derived in vivo RNA structure data
and RBP binding data to predict protein-RNA in-
teractions. Several works illustrate that the structure of
RNA plays an important role in RBP-RNA recognition
[15,65—67]. A large amount of protein-RINA interaction
data, in vivo RNA secondary structure data [68] and
known protein structures in PDB are available. High
precision protein monomer structure prediction
methods provide a great deal of predicted protein
structures [69]. The data discussed above may
compensate for the lack of PDB data and lead to the
emergence of new findings.

Open challenges

RNA modifications are important and missing in protein-
RNA structure modeling algorithms

A large number of RBPs were found to interact with
modified RNAs and a few of the structures of the RBP-
modified RNNA complexes have been solved [70]. These
structures reveal a new post-transcriptional regulatory
mechanism. m°A modification widely exists in mRNA and
non-coding RNA, and many modification sites are evolu-
tionarily conserved between humans and mice [71]. m°A
modification contributes to RBP-RNA binding, acting as
structural switches [72] and regulating the expression of
nearly 2000 genes [73]. So far, more than 170 RNA
modifications have been found, and Chen et al. proposed
that each modification may have a reader, writer and
eraser system similar to the m®A modification [74]. Other
RINA modifications such as, m®Am modifications, as well
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Protein-RNA complex structure modelling approach. Predicting the structure of protein-RNA complexes directly from the sequences, i.e., ab initio
prediction. Otherwise, protein-RNA complex structures are constructed by free docking and template-based modelling using protein and RNA monomer
structures known in the PDB or predicted by computational methods, and RNA modifications as well as 2D geometry based on co-evolutionary infor-

mation are added in order to assist in complex modelling.

as the readers, writers and erasers for other modifications
are still unknown [74]. RNA modifications in protein-
RNA complexes were ignored in a previous protein-
RNA docking study by the Kameda group [12]. Their
study integrated physicochemical information about RNA
into ZDOCK. Only 20 standard amino acids and 4
nucleotide types were used in their work due to the
deletion of modified residues in three widely used

protein-RNA docking benchmark datasets [75—77].
When one of the protein-RNA docking benchmark data-
sets was constructed, they found some modified residues
in the unbound and bound RNA structures through the
RNA modification database MODOMICS [77,78]. They
discussed that these modified residues may be important
for protein-RNA docking, but unfortunately these modi-
fied residues were removed when the dataset was
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constructed [77]. This means that we need to reconstruct
the protein-RNA docking benchmark dataset and include
the RNA modified residues for method development. In
several previous studies, RNA modifications were proven
to affect RBP-RNA binding [73,79—81]. This shows that
the mechanism of RNA modification in RNA-protein
recognition is complex. Which RNA modifications will
affect the RBP-RNA interaction? Which RNA modifica-
tions play an important role in RBP-RNA free docking?
These questions require further investigation. If a
protein-modified RNA modeling system can be made, it
may help to find these unknown readers, writers and
eraser proteins. Although many RBP-modified RNA in-
teractions have been identified, their atomic-scale inter-
action details are still missing. These details are key to
understanding the molecular mechanisms underlying
RBP-modified RNA recognition. Therefore, computa-
tional methods for structural modeling of RBP-modified
RNA complexes are urgently needed to elucidate the
atomic details of RBP-modified RNA interactions.

Conclusions

Despite the advances in the field of RBP-RNA complex
structure prediction, co-evolutionary signals and modi-
fied RNAs have been overlooked in the research process
of RBP-RNA complex structure prediction methods. As
such, predicting the structure of protein-RNA com-
plexes is still challenging. The question regarding
whether or not it is possible to integrate co-evolutionary
signals and types of RNA modifications into current
protein-RNA docking algorithms remains. Future work
includes exploring RNA modifications and co-
evolutionary signals for the development of a protein-
RNA docking algorithm that could enhance sampling
efficiency of protein-RNA docking with PDB and CLIP-
based big data.
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